
Dr. K.R. Nemade: Polyaniline based Photovoltaic Cell

Global demand of energy rising gradually, due to neawy industrialization and urbanization. Developed countries have huge demands of energy while demand is going on increasing in developing countries. The International Energy Agency states that energy needs are projected to expand by 55% till 2030. But unfortunately, the complete demand of energy is astified through non-renewable energy sources such as coal petrofeum, and natural gas. The exploitation of non-renewable energy sources results in range of adverse effects like air and water pollution, damage to public health, global warming and unnecessary atmospheric changes. Key solution for this issue is to use renewable energy sources, sola energy is best option due to outstanding characteristics such as the most abundant, inexhaustible and dean of all the renewable energy resources it didate.

Kailash Nemade Priyanka Nemade

Dr. Kailash Nemade is Head & Assistant Professor at Indira College, Kalamb affiliated Anravati University, He received B.S.c, and M.S.c. (Physics) degree from Sant Gadge Baba Amravati University, Amravati, India, He then did his Ph.D. research work with Professor Dr. Sandeeg Waghuley at the Amravati University, His research group focuses on materials

Academic Publishing

Polyaniline Based Photovoltaic Cells

Imprint

Any brand names and product names mentioned in this book are subject to trademark, brand or patent protection and are trademarks or registered trademarks of their respective holders. The use of brand names, product names, common names, trade names, product descriptions etc. even without a particular marking in this work is in no way to be construed to mean that such names may be regarded as unrestricted in respect of trademark and brand protection legislation and could thus be used by anyone.

Cover image: www.ingimage.com

Publisher: LAP LAMBERT Academic Publishing is a trademark of International Book Market Service Ltd., member of OmniScriptum Publishing Group 17 Meldrum Street, Beau Bassin 71504, Mauritius

Printed at: see last page ISBN: 978-620-2-52918-1

Copyright © 2020 International Book Market Service Ltd., member of OmniScriptum Publishing Group

Contents

_	Chapters	Page No
Cha	pter 1-General Introduction	1-7
1.1	Motivation	1
1.2	Key Challenges Facing by Photovoltaic Technology	2
1.3	Alternatives to Silicon Photovoltaic Cells	3
1.4	klentification of Materials for Photovoltaic Application	3
- 3	1.4.1 Polyaniline	3
- 6	1.4.2 Graphene	4
	1.4.3 TiO ₂ Nanoparticles	4
1.5	Applications of PV Cell	5
111	1.5.1 Solar Water Pumps	5
	1.5.2 Solar Home System	6
	1.5.3 Space	6
Cha	pter 2-Literature Survey and Formulation of Problem	8-14
2.1	Literature Survey	8
	2.1.1 PANi Based PV Cell	8
	2.1.2 PANi-Metal Oxide Composite Based PV Cell	11
	2.1.3 PANi-Graphene Based PV Cell	12
2.2	Formulation of Problem	13
Cha	pter 3-Experimentation	15-21
3.1	Introduction	15
3.2	Preparation of Materials	15
- 3	3.2.1 Preparation of PANi	15
	3.2.2 Preparation of PANi/Graphene Composites	15
	3.2.3 Preparation of PANi/Graphene - TiO2 Composites	16
3.3	Characterization of Materials	16
	3.3.1 X-Ray Diffraction (XRD)	16
	3.3.2 Scanning Electron Microscope (SEM)	17
-	3.3.3 Raman Spectroscopy	18
	3.3.4 Ultraviolet-Visible (UV-VIS) Spectroscopy	19
3.4	Fabrication of Photovoltaic Cell	20
3.5	Measurements of Photovoltaic Characteristics	21
Cha	pter 4-Results and Discussion	23-33
1.1	Materials Characterization and PV Properties of	23
	PANi/Graphene	
- 1	4.1.1 XRD Analysis	23
1	4.1.2 Morphology Study	24
	4.1.3 Raman Spectroscopy	24
- 3	4.1.4 Optical Properties	25
	4.1.5 PV Performance	26
4.2	Improvement in PV Performance by Addition of TiO2 Nanoparticles	28
	4.2.1 XRD Analysis	28
	4.2.2 Morphology Study	29

iii

	4.2.3 Raman Spectroscopy	- 30
	4.2.4 Optical Properties	31
	4.2.5 PV Performance	32
Chapter 5-Conclusions and Future Scope		34-35
5.1	Concluding Remarks	34
	5.1.1 PANi-graphene Composite Based PV Cells	34
	5.1.2 PANi-graphene/TiO2 Nanoparticles Composite Based PV Cells	34
5.2	Future Scope	35
	References	36-40

FORAUTHORUSEONIX